49 research outputs found

    Transient currents in HfO2 and their impact on circuit and memory applications

    Get PDF
    We investigate transient currents in HfO2 dielectrics, considering their dependence on electric field, temperature and gate stack composition. We show that transient currents remain an issue even at very low temperatures and irrespective of the HfO2/SiO2 bilayer properties. Finally, we assess their impact on the reliability of precision circuit and memory applications Transient currents in HfO2 and their impact on circuit and memory applications (PDF Download Available). Available from: http://www.researchgate.net/publication/224672970_Transient_currents_in_HfO2_and_their_impact_on_circuit_and_memory_applications [accessed Oct 22, 2015]

    Memristive neural network for on-line learning and tracking with brain-inspired spike timing dependent plasticity

    Get PDF
    Brain-inspired computation can revolutionize information technology by introducing machines capable of recognizing patterns (images, speech, video) and interacting with the external world in a cognitive, humanlike way. Achieving this goal requires first to gain a detailed understanding of the brain operation, and second to identify a scalable microelectronic technology capable of reproducing some of the inherent functions of the human brain, such as the high synaptic connectivity (~104) and the peculiar time-dependent synaptic plasticity. Here we demonstrate unsupervised learning and tracking in a spiking neural network with memristive synapses, where synaptic weights are updated via brain-inspired spike timing dependent plasticity (STDP). The synaptic conductance is updated by the local time-dependent superposition of pre-and post-synaptic spikes within a hybrid one-transistor/one-resistor (1T1R) memristive synapse. Only 2 synaptic states, namely the low resistance state (LRS) and the high resistance state (HRS), are sufficient to learn and recognize patterns. Unsupervised learning of a static pattern and tracking of a dynamic pattern of up to 4 Ã\u97 4 pixels are demonstrated, paving the way for intelligent hardware technology with up-scaled memristive neural networks

    The laser calibration system of the HARP TOF

    Get PDF
    Abstract The calibration and monitoring system constructed for the HARP experiment scintillator-based time of flight system is described. It is based on a Nd-Yag laser with passive Q-switch and active/passive mode-locking, with a custom made laser light injection system based on a bundle of IR monomode optical fibers. A novel ultrafast InGaAs MSM photodiode, with 30 ps risetime, has been used for the laser pulse timing . The first results from the 2001–2002 data taking are presented, showing that drifts in timing down to about 70 ps can be traced

    A comparison of modeling approaches for current transport in polysilicon‑channel nanowire and macaroni GAA MOSFETs

    Get PDF
    AbstractIn this paper, we compare quantitatively the results obtained from the numerical simulation of current transport in polysilicon-channel MOSFETs under different modeling assumptions typically adopted to reproduce the basic physics of the devices, including the effective medium approximation and the description of polysilicon as the haphazard ensemble of monocrystalline silicon grains separated by highly defective grain boundaries. In the latter case, both pure drift-diffusion transport and a mix of intra-grain drift-diffusion and inter-grain thermionic emission are considered. Interest is focused on cylindrical nanowire and macaroni gate-all-around structures, due to their relevance in the field of 3-Dimensional NAND Flash memories, focusing not only on the average behavior but also on the variability in the electrical characteristics of the devices

    Fully 2D quantum-mechanical simulation of nanoscale MOSFETs

    No full text
    We present results of fully 2D quantum-mechanical (QM) simulations of nanoscale MOSFET's. The validity of semiclassical transport models arc first discussed. Then, QM effects on threshold voltage, subthreshold slope and short-channel performances are addressed. We show that QM effects significantly affect device performances in the nanoscale range

    A study of hot-hole injection during programming drain disturb in Flash memories

    No full text
    Program disturbs in NOR-type Flash arrays significantly degrade the tunnel oxide by hot-hole injection (HHI) induced by band-to-band tunneling at the drain overlap. This paper provides a comprehensive experimental and modeling analysis of HHI in Flash memories under program-disturb conditions. Carrier-separation measurements on arrays of Flash memories with contacted floating-gate (FG) allows for a direct investigation of hole-initiated impact ionization and HHI. A Monte Carlo (MC) model is used to simulate carrier multiplication and injection into the FG. After validating the MC model against experimental data for both secondary electron generation and HHI, the model is used to provide further insight into the hole-injection mechanism
    corecore